Plotting the region
clear
clc
% Region of integration
xL=input("Enter
lower limit of x")
xU=input("Enter
Upper limit of x")
x = linspace(xL, xU); %
x limits
yL=input("Enter
lower limit of y")
yU=input("Enter
Upper limit of y")
Li = yU >= yL ; % Logical Vector
figure
plot(x,yU,x,yL)
hold on
patch([x(Li) fliplr(x(Li))], [yU(Li)
fliplr(yL(Li))], 'b')
hold off
grid
Example:
With the program to mark the region of integration in the following double integrals: $$1. \int_0^{2x} \int_{x^2}^{2x} f(x,y) dx dy$$ $$ 2. \int_1^4 \int_{2}^x f(x,y) dx dy$$
Output
1.
Enter lower limit of x: 0
Enter Upper limit of x: 2
Enter lower limit of y: x.^2
Enter Upper limit of y: 2.*x
2.
Enter lower limit of x: 1
Enter Upper limit of x: 4
Enter lower limit of y:
2+0.*x
Enter Upper limit of y: x
NOTE:
i) If ‘y’ lower limit is constant, give input as yL.*x.
ii)
For the polar plot patch won't work (instead of that we need to use polyfill
but it is not user-friendly).
Double
Integral
Syntax |
Remark |
Syntax |
Remark |
integral2(f,xL,xU,yL,yU) |
f,xL,xU,yL, yU must be function handlers, i.e., use
@(x,y), @(x), @(y) |
int(int(f,y,yL,yU),x,xL,xU) |
f,xL,xU,yL,yU are need not be function handlers, i.e., no
need to use @(x,y), @(x), @(y) |
NOTE:
clear
clc
syms x y
f = input("Enter the integrand: ");
disp('f(x,y)
:');
disp(f);
xL=input("Enter
lower limit of x: ");
xU=input("Enter
Upper limit of x: ");
yL=input("Enter
lower limit of y: ");
yU=input("Enter
Upper limit of y: ");
d = integral2(f,xL,xU,yL,yU);
disp("Double
Integral of f(x,y) :");
disp(d);
Write
a program to evaluate double integral.
$$\int_1^2 \int_2^3 (x-1/y)^2 dxdy$$ Output: Enter the integrand: f(x,y) : Enter lower limit of x: 1 Enter Upper limit of x: 2 Enter lower limit of y: 2 Enter Upper limit of y: 3 Double Integral of f(x,y)
: |
$$\int_0^1 \int_x^\sqrt{x} xy dxdy$$ Output: Enter the integrand: f(x,y) : @(x,y)x.*y Enter lower limit of x: 0 Enter Upper limit of x: 1 Enter lower limit of y:
@(x) x Enter Upper limit of y:
@(x) sqrt(x) Double Integral of f(x,y)
: |
No comments:
Post a Comment