Gradient,
Divergence, Curl, Laplacian
Syntax |
|
|
returns the gradient vector of symbolic scalar field f with respect to
vector v in Cartesian coordinates. |
|
returns the divergence of symbolic vector field V with respect to
vector X in Cartesian coordinates. Vectors V and X must have the same length. |
c = curl(V,X) |
returns the curl of symbolic vector field V with respect to vector X in
three-dimensional Cartesian coordinates. Both the vector field V and the
vector X must be vectors with three components. |
|
returns the Laplacian of the symbolic field f with respect to the
vector v in Cartesian coordinates. If f is an array, then the function
computes the Laplacian for each element of f and returns the output l that is
the same size as f. |
Example 1
Find gradient of $$f=2yz\sin(x)+3x\sin(z)cos(y)$$ a given scalar function at (1,2,3)
clear
clc
syms x y z
f(x,y,z) =input("Enter the function f(x,y,z):");
gradf=(simplify(gradient(f,[x y z])));
fprintf("grad(f)=%s\n",gradf)
p=input('\n
Enter the point in the form [a,b,c] : ');
val=vpa(gradf(p(1),p(2),p(3)));
fprintf('\n
grad(f) at (%d,%d,%d) is (%.4f)i + (%.4f)j + (%.4f)k \n',p(1),p(2),p(3),val(1),val(2),val(3))
Output
Enter the function
f(x,y,z):2*y*z*sin(x) + 3*x*sin(z)*cos(y)
grad(f)=[3*cos(y)*sin(z) +
2*y*z*cos(x); 2*z*sin(x) - 3*x*sin(y)*sin(z); 2*y*sin(x) + 3*x*cos(y)*cos(z)]
Enter the point in the form
[a,b,c] : [1,2,3]
grad(f) at (1,2,3) is
(6.3074)i + (4.6639)j + (4.6018)k
Example 2
Find the divergence of the given vector field $$f=xyi+2xy^2 j+3xz^3 k$$ at (3,4,5)
clear
clc
syms x y z
F =input('Enter
the components of vector F in [x y z] form : ');
div(x,y,z)=divergence(F,[x y z]);
fprintf('\n
div(F) = %s \n',div);
p=input('\n
Enter the point in the form [a,b,c] : ');
val=div(p(1),p(2),p(3));
fprintf('\n
div(F) at (%d,%d,%d) is %d \n',p(1),p(2),p(3),val);
Output
Enter the components of
vector F in [x y z] form : [x*y 2*x*y^2 3*x*z^3]
div(F) = y + 4*x*y + 9*x*z^2
Enter the point in the form [a,b,c] : [3,4,5]
div(F) at (3,4,5) is 727
Example 3
Find the gradient of the scalar function $$f=-(\sin(x)+\sin(y))^2$$ and interpret geometrically.
clear
clc
syms x y
f = input("Enter
the function f(x,y):");
gradf = gradient(f,[x y])
[X1, Y1] = meshgrid(-1:.1:1,-1:.1:1);
G1 = subs(gradf(1),[x y],{X1,Y1});
G2 = subs(gradf(2),[x y],{X1,Y1});
quiver(X1,Y1,G1,G2)
Output
Enter the function f(x,y):-(sin(x) + sin(y))^2
gradf =
-2*cos(x)*(sin(x) + sin(y))
-2*cos(y)*(sin(x) + sin(y))
Example 4
Find the gradient of the scalar function $$f=xy^2+yz^2+zx^2$$ and interpret geometrically.
clear
clc
syms x y z
f = input("Enter
the function f(x,y,z):");
gradf = gradient(f,[x y z])
[X1, Y1, Z1] =
meshgrid(-1:.2:1,-1:.2:1,-1:.2:1);
G1 = subs(gradf(1),[x y z],{X1,Y1,Z1});
G2 = subs(gradf(2),[x y z],{X1,Y1,Z1});
G3 = subs(gradf(3),[x y z],{X1,Y1,Z1});
quiver3(X1,Y1,Z1,G1,G2,G3)
xlabel('X')
ylabel('Y')
zlabel('Z')
Output
Enter the function
f(x,y,z):x*y^2+y*z^2+z*x^2
gradf =
2*x*z + y^2
2*x*y + z^2
x^2 + 2*y*z
Example 5
Find the Laplacian of the scalar function $$x^3+y^2-log(z)$$
clear
clc
syms x y z
f(x,y,z) =input("Enter the scalar function f(x,y,z):");
L=(simplify(laplacian(f,[x y z])));
fprintf("Laplacian
of f(x,y,z) is %s \n",L)
Output
Enter the scalar function
f(x,y,z):x^3 + y^2 - log(z)
Laplacian of f(x,y,z) is 6*x
+ 1/z^2 + 2
Example 6
To find directional derivative of function $$xy^2+yz^2+zx^2$$ in the direction of the vector 𝑖+𝑗+𝑘 at (1,2,3)
clear
clc
syms x y z
f= input("Enter
the function f(x,y,z):");
gradf = gradient(f, [x y z])
n=input('\nEnter
the components of directional vector as [x y z]:');
m = n/norm(n);
D(x,y,z) = simplify(dot(gradf',m));
fprintf('\nDirectional
derivative is %s\n', D)
p=input('\nEnter
the point as [a,b,c]:');
val=vpa(D(p(1),p(2),p(3)));
fprintf('Directional
derivative at (%d,%d,%d) is %f\n', p(1),p(2),p(3),val)
Output
Enter the function
f(x,y,z):x^2*z + x*y^2 + y*z^2
gradf =
2*x*z + y^2
2*x*y + z^2
x^2 + 2*y*z
Enter the components of
directional vector as [x y z]:[1 1 1]
Directional derivative is
(3^(1/2)*(x + y + z)^2)/3
Enter the point as [a,b,c]:[1,2,3]
Directional derivative at
(1,2,3) is 20.784610
No comments:
Post a Comment